

Miscellaneous Exercise Question Bank

1.	36 mL	0.5 M Br ₂ soluti	ion upor	n being made alk	aline un	dergoes compl	ete dispro	portionation ir	nto Br ⁻ and
	BrO_3^- . The resulting solution requires 45 mL As (III) solution to reduce BrO_3^- to Br^- . Given that As(III) is							nat As(III) is	
	oxidize	d to As(V), what	is the m	olarity of As(III) s	solution	?			\odot
	(A)	0.2	(B)	0.1	(C)	0.4	(D)	0.5	
2.	Oxidat	ion of Cu ₃ P to C	CuSO ₄ ar	nd H ₃ PO ₄ involve	s the los	s of:			
	(A)	3 electrons	(B)	5 electrons	(C)	9 electrons	(D)	11 electrons	
3.	If the r is:	nolecular weight	of Ba(N	$(MnO_4)_2$ is M, the	en the e	quivalent weigl	nt of Ba(I	$\mathrm{MnO_4})_2$ in acid	lic medium
	(A)	$\frac{M}{5}$	(B)	$\frac{M}{10}$	(C)	$\frac{M}{3}$	(D)	M	0
4.	Equiva	lent weights o	f CO ₂	in the followin	g reacti	ons, 2 NaHCO	$O_3 \longrightarrow \mathbb{N}$	$Ma_2CO_3 + H_2O$	$+CO_2$ and
	NaHCo	$O_3 + HCl \longrightarrow Na$	aCl + H ₂ 0	O+CO ₂ are resp	ectively	:			
	(A)	22 and 44	(B)	44 and 22	(C)	44 and 44	(D)	22 and 22	
5.	0.96 gr	m a metal oxide	MO is di	ssolved in excess	s dilute s	sulphuric acid,	KMnO ₄ o	of strength $\frac{M}{10}$	requires to
	react v	with it and the	volume	needed to reach	n the ec	juivalent point	is 20 m	nL, assuming	that MO is
		ting into M ₂ O ₃ th	en what	is the atomic m					\odot
	(A)	80	(B)	96	(C)	70	(D)	50	
6.		mber of moles of medium is :	f KMnO4	that will be need	ded to re	eact completely	with one	mole of ferrous	s oxalate in
	(A)	3/5	(B)	2/5	(C)	4/5	(D)	1	
7.				ded to excess of n. The normality			and iodin	ne so liberated i	required 20
	(A)	0.02	(B)	0.04	(C)	0.08	(D)	0.03	
8.	_	of iodine and 14	_	hlorine are made Cl and ICl3.	to react	completely to	yield a m	ixture of ICl an	d ICl ₃ .
	(A)	1:1	(B)	1:2	(C)	1:3	(D)	2:3	O
9.	solutio solutio	n acidified with n:	dilute	belled '10 volum H ₂ SO ₄ . Calculat	e the ar	nount of pota	ssium pe	rmanganate ir	_
	(A)	0.1563 gm	(B)	0.563 gm	(C)	5.63 gm	(D)	0.256 gm	
10.	It take	s 0.15 mole of 0	ClO to	oxidize 12.6 g o	f chromi	um oxide of a	specific i	formula to Cr ₂	O ₇ ²⁻ , ClO ⁻
	became (A)	e Cl ⁻ . The formu CrO ₃	ıla of the (B)	e oxide is (atomic CrO ₂	weight (C)	of $Cr = 52$, $O = CrO_4$	(D)	CrO	$lackbox{(}lackbox{)}$
11.	_	sulphur is burn n: The amount o		n SO ₂ which is precipitated is	oxidized	by Cl ₂ water.	The solu	tion is treated	with BaCl ₂
	(A)	1 mole	(B)	0.5 mole		(C) 0.24	mole	(D) 0.25	mole

12 .	Equal	volumes of 1 M	M each of	KMnO ₄ and K ₂ 0	Cr ₂ O ₇ ar	e used to	oxidize Fe(II	() solution in aci	dic medium.
	The ar	mount of Fe oxi	dized will	be:					\odot
	(A)	more with KM	InO_4			(B)	more with I	$K_2Cr_2O_7$	
	(C)	equal with bo	th oxidiz	ing agents		(D)	cannot be d	letermined	
13.	The n	umber of moles	of Cr ₂ O	2– 7 needed to oxi	dize 0.13	36 equival	ents of N ₂ H	the reaction	, (
		$N_2H_5^+ + Cr_2C$	$D_7^{2-} \longrightarrow N$	$I_2 + Cr^{3+} + H_2O$,	is:				
	(A)	0.136	(B)	0.272	(C)	0.816	(D)	0.0227	
14.	What	is oxidation sta	te of Sulp	hur in oleum?					
	(A)	+6	(B)	+7	(C)	+8	(D)	+4	
15.	In wh		wing is t	there an elemen	it with t	the same	oxidation st	ate as that of c	hromium in
	(A)	${ m Cl_2O_7}$	(B)	$\left[\mathrm{Fe(CN)}_{6}\right]^{3-}$	(C)	VO^{2+}	(D)	$\mathrm{K}_{2}\mathrm{MnO}_{4}$	
16.	In whi	ich of the follow	ing ions o	does the metal h	ave an o	xidation s	tate +3?		
	(A)	VO^{2+}	(B)	${\rm AlO}_2^-$	(C)	[Fe(CN	$[1]_6^{2-}$ (D)	$\left[\mathrm{CrCl_{2}}\left(\mathrm{H_{2}C}\right)\right]$	$(0)_4 \Big]^{2+}$
*17.	Which	equation(s) mi	ght be us	ed to illustrate t	he actio	n of nitric	acid as an o	xidant?	
	(A)	$P_4O_{10} + 4HNO_{10}$	$O_3 \rightarrow 4HI$	$PO_3 + 2N_2O_5$	(B)	$6 \mathrm{Fe}^{2+}$ +	+8HNO ₃ → 6	6Fe ³⁺ + 2NO + 4H	₂ O + 6NO ₃
	(C)	$CO_3^{2-} + 2HNC$	$O_3 \rightarrow CO_2$	$+ H_2O + 2NO_3^-$	(D)	Cu + 4I	$HNO_3 \rightarrow Cu^2$	$^{2+} + 2NO_3^- + 2H_2O$	+ 2NO ₂
*18.	Chlori	ine can exist w	rith oxida	tion state rangi	ng from	-1 to +7	'. In which	of the ions chlor	rine will not
	under	go disproportion	nation ?						\odot
	(A)	ClO ⁻	(B)	ClO_4^-	(C)	${ m ClO}_3^-$	(D)	Cl ⁻	
19.	25 ml	L of 0.50 M H ₂	2O2 solut	ion added to 50	mL of	0.20 M I	KMnO4 in a	cidic medium. W	Thich of the
	follow	ing statements	are true?						
	(A)	0.01 mol of o	xygen is l	iberated	(B)	0.005 n	nol of KMnO	4 does not react v	with H ₂ O ₂
	(C)	0.0125 gm m	ol of oxyg	gen gas is evolved	d (D)	0.0025	mol of H ₂ O ₂	does not react w	ith KMnO ₄
20.	The ed	quivalent wt. of	Na ₂ S ₂ O ₃ i	in the reaction,	Na ₂ S ₂ O ₃	3 + H ₂ O + O	$\mathrm{Cl}_2 \rightarrow \mathrm{Na}_2\mathrm{SC}$	$O_4 + 2HCl + S$, is:	
	(A)	$\frac{\text{mol. wt.}}{1}$	(B)	$\frac{\text{mol. wt.}}{2}$	(C)	$\frac{\text{mol. w}}{4}$	<u>t.</u> (D)	$\frac{\text{mol. wt.}}{8}$	
21.	Which	of the following	g act both	n as an oxidizing	as well	as reducir	ng agent?		
	(A)	HNO_2	(B)	H_2O_2	(C)	H_2S	(D)	SO_2	
22.	0.1 m	ol of MnO_4^- in a	cidic med	lium can oxidize	:				\odot
	(A)	0.5 mol of Fe	2+		(B)	0.166 n	nol of FeC ₂ O	4	
	(C)	0.25 mol of C	$_{2}O_{4}^{2-}$		(D)	0.60 m	ol of $Cr_2O_7^{2-}$		

Paragraph for Question No. 23 to 27

Read the following passage and answer the questions:

In permanganate titrations, potassium permanganate is used as an oxidizing agent in acidic medium. The medium is maintained acidic by the use of dilute sulphuric acid. Potassium permanganate acts as self indicator. The potential equation, when potassium permanganate acts as an oxidizing agent is

$$2KMnO_4 + 3H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4 + 3H_2O + 5[O] \text{ or } MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O + 2MnSO_4 + 3H_2O + 5[O] \text{ or } MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O + 2MnSO_4 + 3H_2O + 5[O] \text{ or } MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O + 3H_2O + 3H$$

Before the end point, the solution remains colourless but after the equivalence point only one extra drop of KMnO₄ solution imparts pink colour, i.e. appearance of pink colour indicates end point. These titrations are used for estimation of ferrous salts, oxalic acid, oxalates, hydrogen peroxide, As₂O₃ etc.

- **23.** In order to prepare one litre of normal solution of KMnO₄, how many grams of KMnO₄ is required if solution is to be used in acid medium for oxidation?
 - (A) 158 gm
- **(B)** 31.6 gm
- (C) 62 gm
- **(D)** 790 gm
- **24.** For decolourization of 1 mol of KMnO₄, the number of moles of H₂O₂ required is :
 - **(A)** $\frac{1}{2}$
- **B**) $\frac{3}{2}$
- (c) $\frac{5}{2}$
- **(D)** $\frac{7}{2}$

25. In alkaline condition, KMnO₄ reacts as follows,

$$2\mathsf{KMnO}_4 + 2\mathsf{KOH} \rightarrow 2\mathsf{K}_2\mathsf{MnO}_4 + \mathsf{H}_2\mathsf{O} + \big[\mathsf{O}\big]$$

Therefore, its equivalent mass will be:

- **(A)** 31.6
- **(B)** 52.7
- **(C)** 72
- **(D)** 158
- 26. Mass of KHC_2O_4 (potassium acid oxalate) required to reduce 100 mL of 0.02 $KMnO_4$ in acidic medium $(MnO_4^- \text{ changes to } Mn^{2+})$ is x gm and to neutralize 100 mL of 0.05 M $Ca(OH)_2$ is y gm, then :
 - (A) x = y
- **(B)** 2x = y
- (C) x = 2y
- **(D)** none of the above
- 27. 10 mL of NaHC₂O₄ solution is neutralized by 10 mL of 0.1 M NaOH. 10 mL of same NaHC₂O₄ solution is oxidized by 10 mL of KMnO₄ solution in acidic medium. Hence, molarity of KMnO₄ is:
 - (A) 0.1 M
- **(B)** 0.2 M
- (C) 0.04 M
- **(D)** 0.02 M

Paragraph for Question No. 28 to 31

Read the following passage and answer the questions:

In iodometric titrations an oxidizing agent such as $KMnO_4$, $K_2Cr_2O_7$, $CuSO_4$, H_2O_2 are allowed to react in neutral medium or in acidic medium with excess of potassium iodide to liberate free iodine.

 $\text{KI} + \text{oxidizing agent} \rightarrow \text{I}_2$

Free iodine is titrated against standard reducing agent usually with sodium thiosulphate, i.e.

$$\mathrm{K}_{2}\mathrm{Cr}_{2}\mathrm{O}_{7} + 6\mathrm{KI} + 7\mathrm{H}_{2}\mathrm{SO}_{4} \rightarrow \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3} + 4\mathrm{K}_{2}\mathrm{SO}_{4} + 7\mathrm{H}_{2}\mathrm{O} + \mathrm{I}_{2}$$

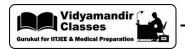
$$2 CuSO_4 + 4 KI \rightarrow Cu_2 I_2 + 2 K_2 SO_4 + I_2$$

$$I_2 + Na_2S_2O_3 \rightarrow 2NaI + Na_2S_4O_6$$

In iodometric titration, starch solution is used as an indicator. Starch solution gives blue or violet colour with free iodine. At the end point, blue or violet colour disappears when iodine is completely changed to iodide.

- **28.** What volume of 0.40 M $Na_2S_2O_3$ would be required to react with I_2 liberated by adding 0.04 mole of KI to 50 mL of 0.20 M $CuSO_4$ solution?
 - (A) 12.5 mL
- (B)
- 25 mL
- (C) 50 mL
- **(D)** 2.5 mL

MEQB 234 Stoichiometry-II


29.	A 1.1 g sample of copper ore is dissolved and Cu^{2+} (aq.) is treated with KI. I_2 liberated required 12.12 mL													
	of 0.1	M Na ₂ S ₂ O ₃ sol	ution for	titration. The %	of Cu in	the ore is	:							
	(A)	2.5%	(B)	7%	(C)	5.8%		(D)	4.2%					
30 .	25 ml	L of N K ₂ Cr ₂ O ₇	acidified s	solution will libe	erate	iodi	ine fron	n KI solu	ıtion :					
	(A)	0.3175 g	(B)	3.175 g (C)	1.75	g	(D)	317.5	g					
31.	5 mL of an aqueous solution of H ₂ O ₂ was treated with excess of KI in dil. H ₂ SO ₄ . The liberated iodine													
	requii	red 40 mL of 0.	1 N Na ₂ S ₂	O ₃ for complete	e reaction	. The con	centrat	ion of H	₂ O ₂ is :					
	(A)	0.34	(B)	0.8	(C)	0.17		(D)	0.85					
32 .	The re	The reaction $H_2S + H_2O_2 \longrightarrow S + 2H_2O$ manifests:												
	(A)	Acidic natur			(B)		nature (
	(C)	Oxidising ac	tion of H ₂	O_2	(D)	Reduci	ing acti	on of H ₂	O_2					
33.	The o	xidation numb	er of carb	on in $C_x(H_2O)_y$ i	s:									
	(A)	0	(B)	+4	(C)	+2		(D)	+6					
34.	Oxida	ntion state of so	dium in s	odium amalgai	m is:									
	(A)	+1	(B)	-1	(C)	+ 2		(D)	0					
35.	Oxida	ntion state of su	ılphur in S	SOCl_2 is :										
	(A)	+20	(B)	0	(C)	+4		(D)	+6					
36.	If the	ee electrons are	loot by a	motal ion M4+	ita final	ovidation	stata s	hould b	0.1					
30.	(A)	0	(B)	+7	(C)	+2	state s	(D)	+8					
07						72		(D)	то					
37.	(A)	ntion state of ca + 4	(B)	+ 2	(C)	0		(D)	Can't be det	ermined				
					(0)	O		(1)	can t be de	~				
38.		ntion state of ch				_				$lackbox{}$				
	(A)	0	(B)	+ 2	(C)	-2		(D)	+ 6					
39.	The oxidation number of oxygen in KO_3 :													
	(A)	+ 3	(B)	+ 2	(C)	+ 1		(D)	-1/3					
40 .	In alkaline medium one mole of $\mathrm{MnO_4^-}$ accepts how many moles of electrons in redox process :													
	(A)	1	(B)	3	(C)	5		(D)	6					
41.	The c	ompound that	can work	both as an oxio	dising and	l reducing	gagent	is						
	(A)	KMnO ₄	(B)	H_2O	(C)	H_2O_2	, 0	(D)	K ₂ Cr ₂ O ₇					
42 .	Oxidation state of phosphorus in Ca ₃ (PO ₄) ₂ is :													
	(A)	6.5	(B)	7	(C)	3.5		(D)	+5					
40								` ,						
43.	(A)	ntion state of ca +2	rbon in H (B)	COOH is:	(C)	+1		(D)	+3					
								(D)	1 3					
44.		d solution, the												
	(A)	Oxidation by				ction by 3								
	(C)	Oxidation by 5 electrons			Redu	Reduction by 5 electrons								

45 .	The a	tomic number	r of an elen	nent which sl	nows the ma	aximum oxid	ation state o	f +3 is : 17					
16		e has the max				55	(D)	17					
46.	(A)	e nas the max K ₂ HgI ₄	(B)	KICl ₂	(C)	I_4O_9	(D)	KI_3					
4 7.		a following rea											
47.	(A)	e following rea P is oxidize		· 3NOH + 3H2	(B)	P is reduce							
	(C)	P is oxidize	•	s reduced	(D)	None	ccu omy						
40					(=)	110110							
48.	(A)	xidation state +2	(B)	-3	(C)	+3	(D)	0					
49 .		h is not a redo	, ,		(0)	10	(D)	O					
	(A)	CaCO ₃ —	_		(B)	2H ₂ O + O	$0_2 \longrightarrow 2H_2$	0					
	(C)	Na + H ₂ O -			(D)		\longrightarrow MnCl ₂ +						
				2				2 2					
50.		e reaction, Zn				_	itor ion is :						
	(A)	Cl ⁻	(B)	Zn^{2+}	(C)	H^+	(D)	All					
51.	In so	dium hydride,	oxidation	state of sodiu	ım is :								
	(A)	0	(B)	+1	(C)	-1	(D)	+2					
52 .	Which of the following reactions involves oxidation and reduction?												
	(A)	NaBr + HC	l — Na	.Cl + HBr	(B)	HBr + Agl	$NO_3 \longrightarrow A$	gBr + HNO3					
	(C)	$H_2 + Br_2$	→ 2HBr		(D)	Na ₂ O + H ₂	$_2SO_4 \longrightarrow I$	Na ₂ SO ₄ + H ₂	0				
53 .	In which one of the following reactions, hydrogen is acting as an oxidising agent?												
	(A)	With Li to g	_	, ,	(B)	With I ₂ to							
	(C)	With N ₂ to	give NH ₃		(D)	With S to	give H ₂ S						
54 .	Whiel	Which of the following equation is a balanced one?											
	(A) $5\text{BiO}_3^- + 22\text{H}^+ + \text{Mn}^{2+} \longrightarrow 5\text{Bi}^{3+} + 7\text{H}_2\text{O} + \text{MnO}_4^-$												
	(B) $5BiO_3^- + 14H^+ + 2Mn^{2+} \longrightarrow 5Bi^{3+} + 7H_2O + 2MnO_4^-$												
	(C)												
	(D)												
55.		-			_	_	NO ₂ + 4H ⁺ +	+ e⁻	H ₂ O + NO are :				
	(A)	5	(B)	4	(C)	3	(D)	2	(•)				
E.C							` ,		_				
56.		ants for the ba			JΠ	/mO ₄ +CO ₃	+ n ₂ 0 the	correct coe	fficients of the				
	10000	MnO_4^-	$C_2O_4^2$	_	DH^{+}								
	(A)	2	1	4									
	(B)	2	5	16									
	(C)	1	2	4									
	(D)	5	2	16	6								

57 .	• Which of the following statement is correct about the oxidation number?										
	(A)	The oxidation number of all atoms in elementary state is 0									
	(B)	The sum of o	xidation	number of all th	ne atoms	in the formula	of a comp	ound is always	zero		
	(C)	Alkali and al	kaline ea	rth metals have	+1 and +	2 oxidation sta	tes respe	ctively			
	(D)	All of the abo	ove								
58 .	The s	ım of the oxida	tion num	bers of all the o	arbons in	C ₆ H ₅ CHO is:					
	(A)	+2	(B)	0	(C)	+4	(D)	-4			
59 .	The or	xidation state o	f nitroger	ı in hydrazoic a	cid, N₃H i	s:					
	(A)	$+\frac{1}{2}$	(B)	+3	(C)	-1	(D)	$-\frac{1}{3}$			
60.	Oxida	tion number of	S in S ₂ C	0_3^{2-} is :							
	(A)	-2	(B)	+ 2	(C)	+ 6	(D)	0			
61.	The or	xidation state o	f molybd	enum in its oxo	complex	species is [Mo ₂ 0	O4(C2H4)2(H ₂ O) ₂] ²⁻	\odot		
	(A)	2	(B)	3	(C)	4	(D)	5			
62 .	The o	xidation states	of the mo	st electronegati	ve elemer	nt in the produc	ets of the	reaction, BaO ₂	with dilute		
	H_2SO_4	are:							$oldsymbol{f E}$		
	(A)	0 and -1	(B)	-1 and -2	(C)	-2 and 0	(D)	–2 and +1			
63.	The or	xidation numbe	er of phos	phorus in Ba(H	₂ PO ₂) ₂ is :						
	(A)	+3	(B)	+2	(C)	+1	(D)	-1			
64.	In whi	ich of the follow	ing comp	oound, iron has	the lowes	st oxidation sta	te?		\odot		
	(A)	FeSO ₄ .(NH ₄) ₂ S	SO ₄ .6H ₂ O	•	(B)	$K_4[Fe(CN)_6]$					
	(C)	Fe(CO) ₅			(D)	FeO					
65 .	Oxida	tion number of	iron in F	e _{0.94} O is:							
	(A)	+2	(B)	+3	(C)	200/94	(D)	8/3			
66.	In the	reaction, 4Fe	+302	\rightarrow 4Fe ³⁺ + 6O ²⁻	which o	of the following	statemen	t is incorrect?			
	(A)	It is a redox									
	(B)	Metallic iron	is a redu	cing agent							
	(C)	Oxygen is an oxidising agent.									
	(D)	Metallic iron	is reduce	ed to Fe ³⁺							
67.	In the	following react	ion, 3Br	$_2 + 6\text{CO}_3^{2-} + 3\text{H}_2$	2O	5Br ⁻ + 3BrO ₃ +	6HCO ₃ :				
	(A)	Bromine is o	xidized a	nd carbonate is	reduced						
	(B)	Bromine is re	educed a	nd water is oxid	ized						
	(C)	Bromine is o	xidized a	nd reduced as v	vell						
	(D)	Bromine is n	either ox	idized nor reduc	ced						
68.	In the	equation NO_2^-	+ H ₂ O —	\longrightarrow NO $_3^-$ + 2H $^+$	+ ne ⁻ , n s	stands for :					
	(A)	H^+	(B)	e ⁻	(C)	$2e^-$	(D)	$3e^-$			

69.	How many moles of electrons are involved in the reduction of one mole of MnO_4^- ion in alkaline medium
	to MnO_3^- .

- (A) 2
- (B) 1
- (C) 3
- **(D)** 4

70. The oxidation state of I in
$$H_4IO_6^-$$
 is :

- (A) +7
- (B)
- (C) +5
- (D) +1

(A)
$$\frac{+2}{3}$$

(B)
$$\frac{+4}{3}$$

(D)
$$\frac{-4}{3}$$

(A)
$$2Rb + H_2O \longrightarrow 2RbOH + H_2$$

(B)
$$2 \operatorname{CuI}_2 \longrightarrow 2 \operatorname{CuI} + \operatorname{I}_2$$

(C)
$$NH_4^+ + NaOH \longrightarrow NaCl + NH_3 + H_2O$$

$$NH_4^+ + NaOH \longrightarrow NaCl + NH_3 + H_2O$$
 (D) $4 KCN + Fe(CN)_2 \longrightarrow K_4 \lceil Fe(CN)_6 \rceil$

*73. Consider the redox reaction,
$$2S_2O_3^{2-} + I_2 \longrightarrow S_4O_6^{2-} + 2I^{-}$$

- $S_2O_3^{2-}$ gets reduced to $S_4O_6^{2-}$ (A)
- $S_2O_3^{2-}$ gets oxidized to $S_4O_6^{2-}$ (B)
- (C) I2 gets reduced to I-
- (D) I2 gets oxidized to I-

(A)
$$Cr_2O_7^{2-} + 2HO^- \longrightarrow CrO_4^{2-} + H_2O$$

(B)
$$SO_5^{2-} + I^- \longrightarrow I_2 + SO_4^{2-}$$

(C)
$$\operatorname{Ca}(\operatorname{OH})_2 + \operatorname{Cl}_2 \longrightarrow \operatorname{Ca}(\operatorname{OCl})_2 + \operatorname{CaCl}_2$$
 (D)

$$PCl_5 \longrightarrow PCl_3 + Cl_2$$

*76. The compound that can work both as an oxidising and reducing agent is:

(D)
$$K_2Cr_2O_7$$

*77. Which one of the following reactions shows reducing action of SO₂?

(A)
$$3 \text{ Fe} + \text{SO}_2 \longrightarrow 2 \text{Fe} + \text{FeS}$$

(B)
$$2H_2S + SO_2 \longrightarrow 3S + 2H_2O$$

(C)
$$I_2 + SO_2 + 2H_2O \longrightarrow 2I^- + SO_4^{2-} + 4H^+$$

(D)
$$\operatorname{Cr}_2 \operatorname{O}_7^{2-} + 3 \operatorname{SO}_2 + 2 \operatorname{H}^+ \longrightarrow 2 \operatorname{Cr}^{3+} + 3 \operatorname{SO}_4^{2-} + \operatorname{H}_2 \operatorname{O}_4^{2-}$$

 $Cr_2O_7^{2-}$

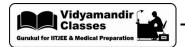
- (A) MnO_4^-
- (B)
- (C)
- NiF_6^{2-}
- **(D)** CrO_2Cl_2

Oxidation state of nitrogen is correctly given for: *79.

(A)
$$[CO(NH_3)_5CI]Cl_2$$
, O.S. = 0

(B) NH₂OH, O.S. =
$$-1$$

(C)
$$(N_2H_5)_2SO_4$$
, O.S. = +2


(D) Mg₃N₂, O.S. =
$$-3$$

	ratio o	f Yttrium used to	o hydrog	gen produced is	:				$lackbox{}{f E}$
	(A)	1:2	(B)	2:3	(C)	2:1	(D)	3:2	
81.	The mo	oles of Ammoniu	ım sulp	hate needed to 1	eact witl	n one mole of M	nO2 in a	cidic medium in	a reaction
	giving ?	MnSO ₄ and (NH	4) ₂ S ₂ O ₈ i	s:					\odot
	(A)	2	(B)	$\frac{1}{2}$	(C)	1	(D)	$\frac{1}{3}$	
82.	Which	of the following	are exa	mples of disprop	ortionat	ion reactions?			\odot
	(A)	$Ag(NH_3)_2^+ + 2H$	H ⁺	\rightarrow Ag ⁺ + 2NH ₄ ⁺					
	(B)	$Cl_2 + OH^-$	→ ClO ⁻	$+ Cl^- + H_2O$					
	(C)	$Cu_2O + 2H^+$	→ Cu	$+ Cu^{2+} + H_2O$					
	(D)	$2 \mathrm{HCuCl}_2$ $\frac{\mathrm{dil}}{\mathrm{c}}$	ute with H	$\xrightarrow{I_2O} Cu + Cu^{2+}$	+ 4Cl ⁻ +	2H ⁺			
83.	What i	s the normality	of 0.3 M	I H ₃ PO ₃ when it	undergo	es the following	reaction	?	
	H_3PO_3	$_3 + 2OH^- \longrightarrow H$	HPO3 ²⁻ +	$2 H_2 O$					
	(A)	0.6 N	(B)	0.15 N	(C)	0.9 N	(D)	0.1 N	
84.	The eq	uivalent mass of	f Na ₂ SO	4 is equal to its r	nolar ma	ss when it is co	nverted t	o:	
	(A)	$\mathrm{Na_2S_4O_6}$			(B)	$\mathrm{Na_2SO_4}$			
	(C)	$\mathrm{Na_2SO_3}$			(D)	Na_2S			
85.	The nit	trate anion can l	be conv	erted into ammo	nium ioi	n. The equivalen	t mass o	f NO_3^- ion in th	nis reaction
	would								
	(A)	6.2 g	(B)	7.75 g	(C)	10.5 g	(D)	21 g	
86.	When o	one gram mole o	f KMnC	₄ reacts with HC	Cl, the vo	lume of chlorine	liberate	d at NTP will be	:
	(A)	11.2 litres	(B)	22.4 litres	(C)	44.8 litres	(D)	56.0 litres	
87.	When	BrO ₃ ion reacts	s with I	Br ion in acid s	solution	Br ₂ is liberated.	The equ	ivalent weight o	of KBrO3 in
	this rea	action is							
	(A)	M/8	(B)	M/3	(C)	M/5	(D)	M/6	
	where	M is the molar n	nass of	KBrO ₃					
88.	In whic	ch of the followir	ng redox	reaction 'n' fact	tor of eve			onal ?	\odot
	(A)	$CsBr + Br_2$ —		r_3	(B)	Mn_3O_4 \longrightarrow	• Mn ²⁺		
	(C)	$KI + I_2 - water$	$\rightarrow \text{KI}_3$		(D)	$NaNH_2 + N_2C$	$0 \longrightarrow N$	$IaN_3 + H_2O$	
89.	For 1.	34×10^{-3} moles	of KBr	O ₃ to reduce in	to brom	ide, 4.02×10^{-3}	mole of	X^{n+} ion is no	eded. New
	oxidati	on state of X wo	uld be :						\odot
	(A)	n + 2			(B)	n – 2			
	(C)	2			(D)	-2			

The reaction between Yttrium metal and dilute hydrochloric acid produces $H_2(g)$ and Y^{3+} ions. The molar

80.

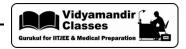
- **90.** Which of the following sequence is correct with reference to the oxidation number of iodine:
 - $\mathbf{(A)} \qquad \qquad \mathbf{I}_2 < \mathbf{ICl} < \mathbf{HI} < \mathbf{HIO}_4$

(B) $HIO_4 < ICl < I_2 < HI$

(C) $I_2 < HI < ICI < HIO_4$

- **(D)** $HI < I_2 < ICI < HIO_4$
- **91.** In the equation $H_2S + 2HNO_3 \longrightarrow 2H_2O + 2NO_2 + S$. The equivalent weight of hydrogen sulphide is:
 - **(A)** 16
- **(B)** 68
- **(C)** 34
- **D)** 17
- **92. Assertion (A):** The oxidation numbers are artificial, they are useful as a book keeping device of electrons in reactions.

Reason (R): The oxidation numbers do not usually represent real charge on atoms, they are simply conventions that indicate what the maximum charge could possibly be on an atom in a molecule.


- (A) Both A and R are true and R is a correct explanation of A
- **(B)** Both A and R are true but R is not a correct explanation of A

 NO_2

- **(C)** A is true but R is false
- **(D)** Both A and R are false
- **93.** The oxide which cannot act as a reducing agent is
 - (A) SO₂
- (B)
- (C)
- CO_2
- (**D**) ClO_2
- $\textbf{94.} \hspace{0.5in} \textbf{H}_2 S \hspace{0.5in} \text{acts only as a reducing agent while } SO_2 \hspace{0.5in} \text{can act both as a reducing and oxidizing agent because} :$
 - (A) S in H_2S has -2 oxidation state
 - **(B)** S in SO_2 has oxidation state +4
 - (C) Hydrogen in H₂S more +ve than oxygen
 - **(D)** Oxygen is more –ve in SO_2
- **95.** Match List–I (Compound) with List–II (Oxidation state of N) and select the correct answer using the codes given below the Lists:

	List–I	List–II			
(A)	KNO ₃	(p)	-1/3		
(B)	HNO ₂	(p)	-3		
(C)	NH ₄ Cl	(r)	0		
(D)	NaN ₃	(s)	+3		
		(t)	+5		

- **96.** For the balanced redox reaction $a NO_3^- + b As_2S_3 + 4 H_2O \longrightarrow x AsO_4^{3-} + y NO + zSO_4^{2-} + 8H^+$ which of the following statements are correct?
 - (A) Equivalent weight of As_2S_3 is M/28 where M is molecular weight of As_2S_3
 - **(B)** The value of a : b = 28 : 3
 - (C) The value of $\frac{a+2b}{x+y}$ is 1
 - **(D)** The value of $\frac{z-x}{3}$ is 1

	molecu	lar weight of FeS ₂ , Fe ₂ O ₃ and SO ₂ are M	I, M' and	l M", then which of the following statements are
	correct	?		$oldsymbol{lack}$
	(A)	Equivalent weight of FeS_2 is $M/11$	(B)	The molar ratio of FeS_2 to O_2 is $4:11$
	(C)	The molar ratio of FeS $_2$ to O $_2$ is 11 : 4	(D)	The molar ratio of Fe_2O_3 and SO_2 is $1:4$
98.	10 mL	of NaHC ₂ O ₄ is oxidized by 10 mL of	0.02 M	MnO_4^- . Therefore, 10 mL of $NaHC_2O_4$ can be
	neutral	ized by:		
	(A)	10 mL of 0.1 M NaOH	(B)	10 mL of 0.02 M NaOH
	(C)	10 mL of 0.1 N Ca(CaOH) ₂	(D)	10 mL of 0.05 M Ba(OH) ₂
99.	$H_2C_2O_4$	acts as an acid as well as an oxidizing ag	gent. The	e correct statement (s) about H ₂ C ₂ O ₄ is/are :
	(A)	it forms two series of salts		
	(B)	equivalent weight of $H_2C_2O_4$ as an acid is	s 45 g	
	(C)	100 mL of 0.1 N solution of Ca(OH) ₂ will	be comp	pletely neutralized by 50 mL of $0.2\ N\ H_2C_2O_4$
	(D)	100 mL of 0.1 M solution of KMnO ₄ (acid	d) will be	completely reduced by 50 mL of 0.1 M $H_2C_2O_4$
100.	During	the disproportionation of $ {\rm I}_2 $ to iodide an	nd iodate	e ions, the ratio of Iodate and Iodide ions formed
	in alkal	line medium is :		\odot

(C)

3:1

(D)

1:3

When FeS_2 is oxidized with sufficient O_2 , then its oxidation product is found to be Fe_2O_3 and SO_2 , if the

97.

(A)

1:5

(B)

5:1

MEQB 241 Stoichiometry-II